Fast matrix-free evaluation of discontinuous Galerkin finite element operators

نویسندگان

  • Martin Kronbichler
  • Katharina Kormann
چکیده

We present an algorithmic framework for matrix-free evaluation of discontinuous Galerkin finite element operators based on sum factorization on quadrilateral and hexahedral meshes. We identify a set of kernels for fast quadrature on cells and faces targeting a wide class of weak forms originating from linear and nonlinear partial differential equations. Different algorithms and data structures for the implementation of operator evaluation are compared in an in-depth performance analysis. The sum factorization kernels are optimized by vectorization over several cells and faces and an even-odd decomposition of the one-dimensional compute kernels. In isolation our implementation then reaches up to 60% of arithmetic peak on Intel Haswell and Broadwell processors and up to 50% of arithmetic peak on Intel Knights Landing. The full operator evaluation reaches only about half that throughput due to memory bandwidth limitations from loading the input and output vectors, MPI ghost exchange, as well as handling variable coefficients and the geometry. Our performance analysis shows that the results are often within 10% of the available memory bandwidth for the proposed implementation, with the exception of the Cartesian mesh case where the cost of gather operations and MPI communication are more substantial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

A locking-free and optimally convergent discontinuous-Galerkin-based extended finite element method for cracked nearly incompressible solids

For nearly incompressible elasticity, volumetric locking is a well-known phenomenon with low-order (cubic or lower) fi nite element method methods, of which continuous extended fi nite element methods (XFEMs) are no exception. We will present an XFEM that is simultaneously lock-free and optimally convergent. Based on our earlier work of an optimally convergent discontinuous-Galerkin-based XFEM,...

متن کامل

Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...

متن کامل

High-performance Implementation of Matrix-free High-order Discontinuous Galerkin Methods

Achieving a substantial part of peak performance on todays and future highperformance computing systems is a major challenge for simulation codes. In this paper we address this question in the context of the numerical solution of partial differential equations with finite element methods, in particular the discontinuous Galerkin method applied to a convection-diffusionreaction model problem. As...

متن کامل

Element free Galerkin method for crack analysis of orthotropic plates

A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.03590  شماره 

صفحات  -

تاریخ انتشار 2017